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Chirosolitons: Unique Spatial
Solitons in Chiral Media
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Abstract—We show analytically that unique spatial solitons
(chirosolitons) can propagate in chiral media that exhibit Kerr-
type nonlinearities. In contrast to the solitons in achiral media,
unique features of the chirosolitons can be seen in their ellipti-
cally polarized nature, the bisoliton state, and the possibility of
superluminous phase propagation. Conditions for supporting the
bright- and dark-type chirosolitons are discussed.

1. INTRODUCTION

HE SOLITON phenomenology has now become ubiq-

uitous in contemporary science and engineering [1]. Of
these, the type that can be described by the cubic nonlinear
Schrodinger equation (NLSE) [2] is regarded as one of the
most aftractive research objects. A representative example of
this soliton is found in the laser beam (or pulse) propagation
in Kerr-type nonlinear media. More recently, signals that
show evidence for the microwave soliton have been detected
[3] by using intensified magnetostatic-wave propagation in a
ferromagnetic thin film. As is well known, there exist two
kinds of solitons in the canonical (1+1)-dimensional NLSE:
bright and dark solitons. We predict in this paper the existence
of a new vectorial soliton, termed a chirosoliton, which could
be observed for intense electromagnetic-beam propagation in
chiral media [4]-[10] with Kerr nonlinearities. Chiralities are
a topological nature of objects, which are definable with
the lack of any translational and rotational symmetry be-
tween themselves and their mirror images [4]. Representative
examples are found in helical conductors, Md&bius strips,
and organic polymers. Chiral media for electromagnetic-wave
propagation are realizable by embedding a number of chiral
objects in achiral host media [5]. Recent progress in polymeric
engineering permitted one to obtain chiral media that appear
useful for wide range of radiation spectra. Only recently,
nonlinear optical experiments concerning the second-harmonic
generation through a fourth-order nonlinear susceptibility due
to molecular chirality [11] and the optical Kerr shutter using
the optical rotatory dispersion of (4)-haxahelicene ([6]) 4%
CS3 solution [12] have been reported. Chilarity is currently
an important issue in liquid crystal physics [13], [14]. In this
context, we note that liquid crystals often exhibit exceptionally
large intensity-dependent nonlinearities [15]. However, except
the harmonic generation, previous studies concerning the elec-
tromagnetic chirality were to our knowledge focused upon its
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ability to manipulate the polarization vector [4]-[10], [12],
the basic principle of which is similar to optical activities.
Our finding in this paper suggests that the combined use of
the chirality and the Kerr nonlinearity (what we call “chiral
nonlinearity” [12], [16]) can give rise to electromagnetic
spatial solitons with unique features that cannot be found
in conventional nonlinear-Schrodinger-type solitons. In par-
ticular, in addition to their polarization properties (i.e., the
elliptically polarized nature), unique features of the chirosoli-
tons can be seen in the existence of two branches (bisolitons)
for the fundamental soliton solution and the possibility of
the superluminous (the fast-wave) propagation for their wave
front. Conditions for supporting the bright- and dark-type
chirosolitons are discussed.

II. BASIC EQUATIONS

We consider nonlinear electromagnetic-wave propagation in
an isotropic Kerr host medium in which a number of chiral
guest objects are densely embedded to enhance chirality. For
such chiral media the constitutive equations with respect to the
relevant electromagnetic-field vectors are well documented in
the literature, and are given by [4]-[10]

D=e¢E+iB, H=ifE+u'B (1)

where F, H, D, and B, are the electric-field, the magnetic-
field, the electric-displacement, and the magnetic-flux-density
vectors, respectively; €, p, and ¢ are the permittivity, the
permeability, and the chiral admittance, respectively, of a
chiral medium under consideration. For achiral media (¢ = 0)
one recovers the usual constitutive relations. We assume here
that the permittivity is intensity dependent (Kerr type). Note
that in recent years, not to mention the optical nonlinearity, the
dielectric nonlinearity in the microwave and millimeter-wave
regions was also investigated both experimentally [17], [18]
and theoretically [19]. Also assumed is that the imaginary part
of the chiral admittance is negligible [6]-[12], [16]. Depending
on the helicity of a chiral medium, the chirality admittance can
be positive or negative. Of course, no modification is required
on Maxwell’s equations. In what follows, we concentrate on
the stationary wave, and then all the field vectors are assumed
to be factorized into the laterally dependent amplitude and a
propagation phase factor as A(x) exp [¢(Fz —wt)], where A(x)
represents the lateral distribution of A(z, z, t); the symbol A
represents £, H, D, and B. No variation along the transverse
(y) axis is considered, i.e., throughout the following algebra
we retain 9/0y = 0. On substitution of (1) into source-
free Maxwell’s equations, coupled wave equations of the
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lateral electromagnetic-field components, F,(z) and H,(z),
are derivable

~Zokd(&,  dE, [dx) /dx + Zot(k§ur + 2671 ) Ea
+d(671G, Jdx) Jda + (kiu, — B2671)G, =0, (2a)

— (ur20&) ' d*E, [da?® — Zo¢d(671dE, [dx) /dx
— [k§&r(Z08) ™t + kg o Zok — B (1nZ0€) ™" — 7€ Zo€] B
+ d(E71dG, /dx) Jdx — (kipr + B2 )G, = 0 (2b)

where G, = iZyH,, Z; is the intrinsic impedance of vacuum,
ko is the wavenumber in vacuum (ko = w/cy, where w is the
angular frequency, and ¢ is the speed of light in vacuum),
B is the phase constant along the z axis, €, is the relative
permittivity (the tilde denotes a nonlinear quantity), and .. is
the relative permeability. Here we imply e, > 1, p,. > 1.

Note that apparently (2) are too complicated to treat them
analytically. Although, with the aid of a numerical method,
direct analysis of them is not necessarily impossible, it requires
much computational effort. To render an analytical approach
possible, below we adopt a reasonable assumption that the in-
duced variation of the nonlinear permittivity ¢, is considerably
smaller than the linear part ¢,.. With this assumption, additional
terms that contain derivatives of &, can be dropped, and we
obtain a reduced version of (2)

~Z0¢d’E, Jdz® + Zo&(k3érpr + B2)E,,

+d2G, /dz? + (ke pr — B2)G, =0, (3a)
- [gr(ﬂrzog)_l + ZO&]dZEw/dxz
— [K3€2(Zo&) ™" + kgérpir Zok
- ﬁ2gr(/f"TZO§)_1 - ﬁzZO§]Ez
+d?G, [de® — (k2é-p, + B2)G, 2 0. (3b)

In what follows we consider the mode with G, = nFE,
(where 7 is a dimensionless constant). Substituting this relation
into (3), we obtain
dzEw/dwz +[(n+ Zoé)(n — ZOE)_lkggr.ur - 32]

‘E, =0  forn# Zof, (4a)

B E Jdz* + {[erpy " + (Zo€)? + nZo€]
X [grﬂ;—l + (Zof)z - nZO€]—1k(2]grUr - ﬁz}
By =0 for &t + (Zo€)% — nZo€ # 0.(4b)

Comparison between these two equations results in

(n+ Zot)(n — Zot) ™"
= (et ' + (Z0€)* +nZ0€]
&ut + (Z08)? — nZo€] ™!

from which, after brief algebra, we obtain

Zo€[n® — &rprt — (Z0€)?] = 0. ®
Solving this for n we can derive the explicit form of the
constant 7
EErurt + (Zo€)’]? for £ #£0

N+ =
= e ut + (Zo&)*]V2. (6)
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The physical meaning of each sign will be mentioned Iater.
Note that (6) is meaningful solely for nonvanishing £; for
€ = 0, (5) holds identically. (In the limit of £ — 0, (3) are
decoupled, and 7+ do not have to be zero). With (6), (4a), and
(4b) become compatible each other, and degenerate to single
equation; for the isotropic Kerr-type nonlinearity [20]

& =€ + H(,Ewlz + IEy|2 + ]EZIQ) @)
it can be written explicitly in the form

d’E. [d2® + [fr(€ry pr, E)kiertr — 52
t felern fors E)R2 (| Es? + |Ey? + | B ) By =

®

with
f:l:(era Hory 5) = /1'1"6;1(205 + 77:%:)27 (9a)
E, = ivpp(Yons + &) E,, (9b)
E,=if'0F,/0x (9¢)

where the coefficient x governs the magnitude of the non-
linearity, v, = w/@B, and Yy = 1/Z,. From experimental
results concerning the Kerr-type chiral nonlinearity [12], [16],
it would be reasonable to understand that, at least for such
weak nonlinearities as assumed in this paper, the constitutive
relations (1) used in isotropic chiral media remain valid for
the chiral Kerr media. From (6) and (9a) fi is constantly
positive. Because (8) is a one-dimensional cubic NLSE, it can
predict the two kinds of soliton solutions: the bright and the
dark solitons.

1. SOLITON SOLUTIONS

As an ansatz of the fundamental bright soliton we set

E.(z) = Ap sech (ax) 10)

where Ao and « are real constants that represent soliton
amplitude and a reciprocal beam width, respectively. From
(9b), (9¢), and (10), (8) can be reduced to the form
dE,[dx? + [f+(er, tirs Okperpr — 5°
+f:l:(€ra Hory f)k(%ﬂrﬂ:i:leF]Ez =0 (11
with
ket = {1+ kpoleg ' u(Yons + €)° + (Afsf+/2)]87 %}

& [1+ kgpreg  u(Yons + 626721k (12)
where a fourth-order term that depends on |E, |4, which arises
from the |E,|? term, has been dropped as we focus in this

paper solely on the lowest-order (i.e., the Kerr) nonlinearity.
From (10) and (11) we obtain

a = koAol[(prkix/2) (e, pir, 7, (13a)

B = ko{fe(er, pr, Otirler + (ke /2)AF}2 (13b)

The intensity FWHM can be calculated by the relation:
FWHM = 1.7627/c. Because a must be real, the Kerr
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coefficient x should be positive (self-focusing). On substitution
of (12) into (13b) one obtains a quadratic of 32. This is
solvable for 3 to yield finally

B = ko{f(er, b, E)poler + (K /2) AT}

where &' = (1 + Yp)s. In the derivation of (14) we have
neglected higher-order, additional terms with order of (xA2)%.
Note that in the limit of the vanishing chirality (£ — 0), f+ —
1, and eventually (10) with (13a) and (14) reduces to that for
the usual bright soliton. It is found from (13a) and (14) that
both the spot size and the propagation constants are dependent
on fi. In particular, the variation of the phase constant 34
against the magnitude of chirality appears interesting since 51
determines the phase velocity (v,) of the chirosoliton through
the relation v, = w/fB+. From (9a) and (14) one can obtain
the following inequalities

A7 < 2(enk’) =€ + erpty = 2206 + 2(Z0€)?)]
dfor 0 < B+ < ko (fast-wave region) (15a)

(14)

A > 2(enk!) =2 + eppt ~ 2706 + 2( 7€)

for B+ > ko (slow-wave region). (15b)

It should be noted here that the fast wave permits of superlu-
minous propagation in the sense that the phase velocity of the
soliton exceeds the speed of light in vacuum, i.e., v, > ¢o. To
be superluminous, it follows from (15a) that

€> (Yo/2)[1 + (262 — 2,7t + 1)V (16a)

or

£ < (Yo/2)[1 — (2¢] = 2e, . + 1)/, (16b)

Note that at least with €, > 1, p,. > 1, the argument of the
square root on the right-hand side of (16) remains positive.
Numerical results for (16) are shown in Fig. 1, where it is
assumed that p,. = 1. For instance, for €, ~ 1.5, u, ~ 1,
we obtain from (16b), ¢ < —0.77 mS. We find that although
this value of |¢| is substantially larger than that of typical
optically active media, it is comparable to those considered in
the literature with regard to the electromagnetic chirality [6]-
[10]. In addition, the use of a liquid crystal in the cholesteric
phase may permit of a chilarity comparable to this value. This
superluminous wave propagation, by no means, contradicts
the causality and the special theory of relativity, because we
restrict our attention to the phase velocity [21]. Indeed, in
a waveguide bounded by a perfect conductor, it has been
well known that the phase velocity may exceed cp. Evidently,
the situation is essentially different from the superluminous
soliton we have discovered here where the physical system is
nonlinear and unbounded (open). It should be emphasized that
the possibility of the superluminous bright-soliton formation
is indeed a unique feature of the present chirosoliton. Aside
from the dark soliton, superluminous phase propagation is, in
principle, never achievable with the use of the conventional
bright soliton in achiral media.

We would like to stress here that such superluminous
solitons are indeed physically reasonable and, by no means,
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Fig. 1. Regions for superluminous (I and III) and subluminous (II) phase
propagation. The chiral admittance & of (16) is plotted versus the relative
permittivity €. The relative permeability g is set to be unity. The two
superluminous (fast-wave) regions are marked with I for (16a) and III for
(16b). The gap region marked with II offers the subluminous (the slow-wave)
region.

arise from any mathematical artifice. They can be explained
intuitively as follows. We first note that to support bright
solitons the linear phase terms in the left-hand side of (11)
should be negative, i.e., the following inequality

f:l:(era Ko s g)k(%er.ulr - [3)2 <0

must hold. Consider the limit of ¢ — 0 (achiral limit). In
this limit, as derived from (9a) with (6), f+ — 1. Thus the
inequality is reduced to kZe, X p.— 32 < 0,1e., 8% > kie, iy,
which verifies that without chirality, superluminous phase
propagation is not, in principle, achievable. However, with
chirality being included (¢ # 0) the situation is expected to
change radically. Since fi are the explicit function of &, with
careful choice of the chirality parameter the magnitude of
f+ could be varied in an optional fashion. Specifically, for
f+ < 0, superluminous phase propagation is unconditionally
possible. As already shown in (16) and Fig. 1, through algebra
and numerical calculations we have ensured that this is indeed
the case. On the other hand, for dark solitons to be supported,
the linear phase terms in (11) should be positive, i.e., the
inequality

fﬂ:(em Hr s g)kger/ir - /82 >0

must hold. It is obvious that in sharp contrast to the case of
bright solitons, even in the limit of £ — 0, ie., f1 — 1, they
can become superfuminous (4% < kZe, ).

Subsequently we discuss the dark-type chirosoliton. As an

ansatz of the black-type dark soliton we set
E,(z) = Aptanh (ax). 17

From (9b), (9¢), and (17), (8) can be reduced to the form that
is identical to (11). From (11) and (17) we obtain

o = koAo[—(prkis/2) faler, e, ]2  (18a)

B = kolfa(ers piry E)prler + e AD)]Y2.

In contrast to the bright soliton, from (12) and (18a) the
Kerr coefficient x should be negative (self-defocusing). On
substitution of (12) into (18b) one obtains a quadratic of 52,
which yields

/Bj:U = kO[f:l:(erv toyy E)/’(”f‘(er + H,A(Z))]l/z’

(18b)

(19a)
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ﬂj:L - kOAO['—f:I:(Era Hry 5)“1‘/‘7%]1/2

where the subscripts ‘U’ and ‘L’ indicate, respectively, the
upper and the lower branches, both of which are found to be
oscillatory; as in the bright soliton we have dropped additional
terms with order of (xA2)2. Note that in the limit of the
vanishing chirality, (17) with (18a) and (19a) is reduced to
that for the conventional black soliton. From (9a) and (19a)
we obtain

A > (k) M= + ey — 2206 +2(Zo8)
for 0 < Biy < ko (fast-wave region) (20a)

(19b)

A2 < (epk) =€ + erpt = 2706 + 2(Z0€)?

for Biy > ko (slow-wave region). (20b)

It should be noted that for field intensities that meet (20a) the
dark-soliton propagation can become superluminous (v, > co).
However, in contrast to the bright soliton, this condition can
in principle be met even for the vanishing chirality [set £ = 0
in (20a)]. A unique feature we would like to stress here is
the fact that the dark chirosoliton (¢ # 0) should propagate in
a superluminous fashion independently of the beam intensity,
provided that the chirality lies in the range that is identical to
(16). From (9a) and (19b) the intensity relation of the lower
branch, the existence of which is unique to the chirosoliton,
is obtainable

A2 < (= feprY,) "t for 0 < Bar < ko
-(fast-wave region) (21a)

A2 > (—frpewYo) ! for Big > ko

-(slow-wave region). (21b)

We shall check here whether in the limit of vanishing
nonlinearity (x — 0) one recovers the right(+)- and left(—)-
handed elliptically-polarized plane waves that are known to
propagate in linear chiral media [6]-[10]. In this limit, with
8/0z = 0, the nontrivial condition for (11) predicts the two
phase constants

ki = ko(erpir f£)'/? = wpé + [epurkd + (wpé)]? (22)

where (9a) has been substituted. We find that these coincide
with those presented in the literature [6]-[10].

IV. POLARIZATION PROPERTY

Finally, we discuss the polarization (the vectorial) charac-
teristic of the chirosoliton. From Maxwell’s equations with
the constitutive relations (1), all the electromagnetic-field
components are expressible in terms of E

H, = —iYons By (232)

Hy = Up(e + YonLué + M€2)Ex (23b)
H, =Ynsf '0E, [0z (23¢)
D, = (e + Yonept + p&?) B, (24a)
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Dy = ivppf(e + 206%)(Yona + €) + €] E, (24b)
D, =i~ (e + Yonepé + p€?)0E, [0z (240)

B, = —ip(Yone + ) E; (258)

By = vpple + 2p(Yons + )] Ex (25b)

B, = uf~ (Yot + €)0E, /Oa. (25¢)

Note that the results of £, and E, have been given in (9b)
and (9c¢), respectively. It can be seen from these equations that
H,, D,, and B, are in phase with F,, whereas E,, I,, H,
Dy, D., and B, are in quadrature with it. Also seen is that
all the longitudinal components (F,, H,, D, and B,) exhibit
a parity that is opposite to the remaining [the lateral (z) and
the transverse (y)] components. From (9b) the ellipticity of
the polarization vector is given by |E,/E,| = vpu|Yont + €.
Here it is obvious from (9b) that for Yyni + £ > 0, one
predicts the left-handed elliptically-polarized state, whereas for
Yon+ + £ < 0, one predicts the right-handed counterpart. For
instance, with 7_ < 0 [the lower sign of (6)] and £ < O
[(16a)], the trajectory of the electric-field vector should be
right-handed. Since, as seen in (6) and (14) [or (19)], both 1+
and v, are a function of &, the ellipticity will depend on the
chirality in a nontrivial fashion. A numerical example will be
shown elsewhere.

V. CONCLUSION

We have presented a novel type of spatial soliton, termed a
chirosoliton, which arises from the combined effect of chirality
and nonlinearity of electromagnetic media. Subsequently we
have predicted some unique properties of this soliton such
as the possibility of superluminous phase propagation and
the existence of two (upper and lower) branches in the dark
soliton solution. Moreover, we have discussed its polarization
(vectorial) characteristics. As was predicted for conventional
electromagnetic (microwave and optical) solitons in achiral
media, exploring exotic and unusual solitonlike entities, such
as multidimensional solitons (quasisolitons) [22], [23] includ-
ing localization in both space and time, dark soliton crosses
[24], [25], electromagnetic vortices [26], [27], bright-dark
symbions [28], and bright-kink symbions [29], is of great
interest as a future research topic.
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